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Theme

CAADence in Architecture    
Back to command

The aim of these workshops and conference is to help transfer and spread newly ap-
pearing design technologies, educational methods and digital modelling supported by 
information technology in architecture. By organizing a workshop with a conference, 
we would like to close the distance between practice and theory.
Architects who keep up with the new design demanded by the building industry will 
remain at the forefront of the design process in our IT-based world. Being familiar with 
the tools available for simulations and early phase models will enable architects to 
lead the process. We can get “back to command”.
Our slogan “Back to Command” contains another message. In the expanding world of 
IT applications, one must be able to change preliminary models readily by using dif-
ferent parameters and scripts. These approaches bring back the feeling of command-
oriented systems, although with much greater effectiveness.

Why CAADence in architecture?
“The cadence is perhaps one of the most unusual elements of classical music, an indis-
pensable addition to an orchestra-accompanied concerto that, though ubiquitous, can 
take a wide variety of forms. By definition, a cadence is a solo that precedes a closing 
formula, in which the soloist plays a series of personally selected or invented musical 
phrases, interspersed with previously played themes – in short, a free ground for vir-
tuosic improvisation.”
Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications 
might operate in the hand of architects like instruments in the hand of musicians. We 
have used the word association cadence/caadence as a sort of word play to make this 
event even more memorable.

Mihály Szoboszlai 
Chair of the Organizing Committee
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Performance-oriented Design Assisted by a Parametric 
Toolkit - Case study

Bálint Botzheim1, Kitti Gidófalvy1, Patricia Emy Kikunaga2, András Szollár2, 
András Reith1,2

1Mérték Architectural Studio Ltd., 2ABUD Engineering Ltd.
2e-mail: reith.andras@abud.hu

Abstract: Ongoing development of Budapest Zoo includes a Biodome building 
which is going to be the largest building of its kind in Europe. The Biodome was 
designed by Mérték Architectural Studio, supported by ABUD Engineering Ltd 
providing sustainability design. This paper describes a parametric method devel-
oped particularly for this project focusing on performance-oriented design. The 
parametric approach was used not only for describing and designing the complex 
geometry of the Biodome but helped structural engineering and sustainability 
design also. Several geometry variations were generated by the parametric sys-
tem and these were run through preliminary structural simulations by built-in 
plugins. Therefore, the structural form resulting from the preliminary analyses was 
already close to optimal and the structurally ideal version could be identified at a very 
early design phase. The parametric system could also inform the sustainability de-
sign process directly. To find the version of the building with the smallest ecological 
footprint, Life Cycle Assessment was carried out on different building material sce-
narios. Solar radiation and shading analyses were performed to optimise building 
energy consumption by using integrated simulation tools. As a result of the paramet-
ric definition and combining different design and engineering parameters into one 
parametric system we got an integrated tool for performance oriented design.

Keywords: Keywords: Parametric design, Free-form, Grid Shell, Shading De-
sign, Life Cycle Assessment, Sustainable Design, Environmental Analysis, Struc-
tural Optimization, Performance Oriented Design

DOI: 10.3311/CAADence.1666

INTRODUCTION
The Budapest Zoo and Botanical Garden has been 
granted a new territory in 2014.  with the site of the 
former Budapest Amusement Park. New develop-
ments started on this site called Pannonpark and 
Tale Park.  The main feature of the Pannon Park 
will be a special building called Biodome, wich 
will function as a covered zoo. The interior will be 

inhabited with plants and animals in the artificial 
subtropical climate of the building. The building 
is divided into three parts: the Visitor Center, the 
Pannon Wilderness, and the Waterworld includ-
ing the Pannon Sea Aquarium.  
One of the attractive feature of the building will 
be the undulating, large span roof, planned to be 
made of steel and ETFE foil. It will incorporate four 

http://dx.doi.org/10.3311/CAADence.1666
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domes and covers the whole 17500 m2 floor area 
of the building. Freeform roofs are becoming not 
only a universal structural solution [1] for contem-
porary buildings, but often referred as a building 
skin [2] that integrates structure and facade into 
one architectural element. The Biodome’s double 
curved roof will act as an intelligent skin, which 
will be able to react to the weather with shading to 
ensure the interior visual and thermal comfort.
Responding to the need of the 21st century’s pro-
gressive design innovation, parametric design has 
an important role in the design process at Mérték 
Architectural Studio. New specialism referred 
as parametric design, includes the development, 
control and sharing geometry information within 
the design team, and explores multiple solutions 
related to an architectural design problem, with 
the use of parametric systems. [3] Rhino / Grass-
hopper is the most popular and widely used plat-
form for parametric design. The platform is in the 
focus of programmers thus a plenty of plugins 
have been under development to help architec-
tural designers. A parametric environment such 
as the Rhino / Grasshopper platform allows the 
design team to make their own parametric design 
tools. [4][5] This is made by algorithmic modelling 
and integrating simulation plugins into the para-
metric definition. The benefits of the parametric 

design approach are clearly demonstrated by the 
works of the Specialist Modelling Group at Foster 
and Partners. [6]

PARAMETRIC DEFINITION OF THE COM-
PLEx GEOMETRy
There was a need to squeeze as much space into 
the site as possible to achieve the 17,500 m2 floor 
area required. For this reason, the base contour 
of the Biodome follows the L-shaped site with the 
chain of curves tangent to each other. The base 
geometry of the Biodome roof structure is a free-
form surface which is generated from a network of 
curves. The contour curve on the xy plane is made 
of arcs tangent to each other. (Left on Figure 2) 
There is another base-curve referred as z-silhou-
ette curve which determines the silhouette of the 
final Biodome shape. Endpoints of the silhouette 
curve define the right and the left boundary of the 
shape. Additional 3 point curves are generated 
with starting points on the right boundary of the 
2D contour, midpoints on the z-silhouette con-
tour and endpoints on the left boundary of the 2D 
contour. This network of curves defines the base 
surface, which serves as an envelope for the grid 
points of the roof structure of the Biodome. (Right 
on Figure 2) 

Figure 1: 
Aerial render of the 
Biodome in the context of 
the Zoo
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Figure 2: 
Left: the base contour 
curve, the z-silhouette 

curve and the network of 
curves; Right: the enve-

lope surface

Figure 3: 
The basic and the final 

triangulation generated 
using Kangaroo 3D

ROOF GRID GENERATION
An integrated physics engine called Kangaroo 3D 
[7] was used to generate a triangular grid, con-
strained to the double curved envelope surface. 
(Figure 3) The goal of this process was to achieve 
an effective triangle grid, by its size and topol-
ogy.  The starting geometry of this process was 
an equally spaced triangle point grid. The physics 
engine distributed it on the envelope surface. For 
the physics engine, linear springs are assumed 
between the grid points, while each point is pulled 
to the surface with a force. [8] The physics engine 
finds the equilibrium state of this model with an it-
erative process. The resulting triangular grid was 
then simply cut along the boundary (Figure 4). The 
structural designers suggested to avoid short and 
steep line elements close to the boundary. On one 
hand, short line elements may get overstressed 
under temperature load, while too steep elements 
may not transfer any load. On the other hand, it is 

uneconomical to have too many joints. 
Thus the grid had to be refined. (Figure 5.)
Thus in a separate Kangaroo task, the boundary 
edges of the geometry were pulled to match its 
topology for the grid, by constraining the closest 
points of the naked edges to the 2D boundary con-
tour curve. Figure 6 shows the input and the result 
of this process with highlighted boundary points. 
Grey lines are deleted after the process, while the 
red lines are considered with 60% of the target 
edge size of the blue edges to avoid too short beam 
elements. This process was also useful to obtain 
the required mesh density: as the design process 
advanced, the triangle edge size needed to be in-
creased to reduce overall cost. This was achieved 
by modifying the input boundary points. Due to the 
mesh generation process explained above, the 
triangular point grid obtained is distributed on the 
envelope surface to a given domain distance from 
each other.

Figure 4: 
The base grid after the 

Kangaroo simulation. The 
black curve indicates the 

plane of cutting

Figure 5:The number of 
short and steep beams 

around the boundary 
needed to be reduced
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COLLABORATION WITH STRUCTURAL 
ENGINEERS AND CONCEPTUAL SIMULA-
TION
Due to the freeform shape of the Biodome struc-
ture, there is a close relationship between form 
and structural behaviour. Consequently, frequent 
collaboration was required with the structural 
engineers. A required centerline model was gen-
erated from the parametric model to speed up the 
communication between the design software and 
the engineering software. 
From the very beginning of the project, also con-
ceptual simulations were made, by an integrated 
Grasshopper plugin called Millipede. [9] This tool 

can visualize the deflection of the structure on 
gravitational loads, which helped to recognise the 
problematic zones of the structure. At the con-
ceptual phase, several structural versions were 
compared including catenary based and circular 
based forms of the Biodome. 
One of the most important decisions was to find 
a structurally ideal and aesthetic shape. [10] Cat-
enary curves (blue on Figure 7) and arc based 
curves (biarc: green, arc: orange on Figure 8) with 
varying maximal heights were defined as a basis 
for the network of curves. The final choice for the 
section curve was the catenary curve based on 
aesthetic and structural aspects.

Figure 6: 
The points of the trian-
gular grid close to the 
boundary edges pulled to 
these edges using Kanga-
roo simulation

Figure 7: 
Various section curves on 
the base contour

Figure 8: 
Various section curves 
(catenary: blue, biarc: 
orange, arc: green)
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Figure 9: 
Ladybug seasonal sums

Figure 10: 
Shading reactive to the 

radiation

REACTIVE SOLAR DESIGN
The whole roof area of the Biodome will be covered 
by ETFE foil. [11] Preliminary analysis was made to 
compare Biodomes in Europe by their inner target 
climate, vegetation and the climate of their loca-
tion. The Budapest Biodome will have the south-
ernmost location in Europe. Also, comparing the 
amount of vegetation, we can see that the Buda-
pest Biodome will embrace less vegetation than 
other Biodomes. Due to the low latitude, the solar 
radiation received by the building will be higher. At 

the same time, the cooling effect resulting from 
evapotranspiration will be smaller than on typical 
European Biodome sites. The main challenge for 
the engineering team was to find the optimal ra-
tio between the use of active and passive design 
measures to ensure the required indoor lighting 
and thermal comfort conditionsFor all inhabitants 
of the Biodome, such as plants and animals and 
also for users of the Biodome, such as visitors and 
zookeepers. The aim was to cut down the use of 
active tools, such as high energy consuming HVAC 
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Figure 11: 
The complete parametric 
definition of the Biodome: 
1, contour curve genera-
tion; 2, z-silhouette curve 
generation; 3, curve 
network and envelope 
surface generation; 4, 
mesh grid generation and 
optimisation; 5, prelimi-
nary structural simula-
tion; 6, environmental 
simulation; 7, shading 
generation

systems by the use of passive solutions. Flexible 
shading system will be applied to the whole struc-
ture to ensure sufficient shading in the summer 
period and maximum light in the winter period. 
In a collaboration with the engineering team, so-
lar radiation analyses were made with the use 
of an environmental plugin called Ladybug [12]. 
The plugin was integrated into the Grasshopper 
algorithm, thus the simulation could run on the 
original geometry, without the need of remodel-
ling. Solar radiation analysis was carried out on 
the outer surface on specific dates and times to 
find out the minimum and maximum amount of ra-
diation throughout the year. Additionally, seasonal 
sums were generated to identify the zones with 
the most and least amount of shading required. 
(Figure 9) Based on the results, the engineers 
could prescribe the operation of the shading sys-
tem in a seasonal manner. Moreover, daily pattern 
of the shading operation could also be prescribed 
based on weather changes. Thus the shading sys-
tem will be able to adapt to the seasonal needs but 
can also react to the rapid changes of the weather 
driven by real time data from sensors installed. 
(Figure 10) Figure 11 shows the complete Grass-
hopper 3D definition.

LIFE CyCLE ASSESSMENT
Throughout the design process, sustainability 
aspects have been of high priorities. Life Cycle 
Assessment was performed in a separate non-
parametric task to find the smallest ecological 
footprint version of the building. Material quanti-
ties for this study were generated directly from 
the parametric model. The first step for this type 
of assessment is the identification of key building 
materials which can be evaluated based on their 
ecological impacts. The second step and the most 
critical factor is the amount of these materials, 
which the building uses. Accordingly building ma-
terials were studied and sorted by their ecologi-
cal footprints. This included steel, concrete and 
timber as structure material, glass and ETFE as 
building enclosure materials, and different types 
of surface treatments (galvanisation, painting 
etc.) for the structure. Different types of topolo-
gies of the grid structure were also studied this 
way to understand their ecological footprints. 
The three topologies were a square grid, a basic 
triangular grid and a relaxed triangular grid re-
ferred as geodesic grid (this was the final option 
generated using Kangaroo). Then scenarios were 
created, using different materials in combina-
tions with the different structure grid topologies 
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with their proper quantity of use. Then scenarios 
were compared to find theversion with the lowest 
environmental impact.(Figure 13) Since the en-
vironmental impacts were directly related to the 
amount of materials, the more the total quantity 
of materials was, the higher the embodied impact 
of the building became. The conclusion of the as-
sessment was that the best option is the geodesic 
triangular grid with ETFE covering. 

CONCLUSION
Architecture in the 21st century is about formal in-
novation and environmental performance. Para-
metric tools stands all these demands from the 
early conceptual to the construction drawing 
phase of the project. Parametric tools can also 
handle the complexity of the geometry that can 
be generated only via an algorithmic process. The 
benefit of the algorithmic approach is that it can 
generate various versions of the design very quick-
ly. Besides this, the environmental and structural 
performance can also be successively monitored 
during the design phases with integrated plugins 

and in-house tools. To constrain the number of 
versions to be evaluated, the variables were de-
fined according to the key design performance 
indicators. The parametric model with this fea-
ture functioned as a design tool that enabled the 
development of key versions for discussion with 
the design team. As the project moved forward, 
design decisions were made along these conver-
sations between the parties.
Traditional CAD systems were made to be digital 
drafting tables to make plans follow the design 
as a static entity. Today parametric programming 
environments like Rhino/Grasshopper 3D give 
the possibility to generate versions of design ac-
cording to a design intent. Thus design is no more 
acting as an answer to a question but as field of 
possibilities related to a specified design prob-
lem. The way to the final plans resulted in series 
of decisions. In the parametric age, Architectural 
Practices are facing the challenge of developing 
their own design toolkit project by project. To ad-
dress this, parametric environments need to be 
improved to integrate engineering phases seam-
lessly 

Figure 12: 
LCA results comparing 
the total environmental 

impacts of all options
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