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Theme

CAADence in Architecture    
Back to command

The aim of these workshops and conference is to help transfer and spread newly ap-
pearing design technologies, educational methods and digital modelling supported by 
information technology in architecture. By organizing a workshop with a conference, 
we would like to close the distance between practice and theory.
Architects who keep up with the new design demanded by the building industry will 
remain at the forefront of the design process in our IT-based world. Being familiar with 
the tools available for simulations and early phase models will enable architects to 
lead the process. We can get “back to command”.
Our slogan “Back to Command” contains another message. In the expanding world of 
IT applications, one must be able to change preliminary models readily by using dif-
ferent parameters and scripts. These approaches bring back the feeling of command-
oriented systems, although with much greater effectiveness.

Why CAADence in architecture?
“The cadence is perhaps one of the most unusual elements of classical music, an indis-
pensable addition to an orchestra-accompanied concerto that, though ubiquitous, can 
take a wide variety of forms. By definition, a cadence is a solo that precedes a closing 
formula, in which the soloist plays a series of personally selected or invented musical 
phrases, interspersed with previously played themes – in short, a free ground for vir-
tuosic improvisation.”
Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications 
might operate in the hand of architects like instruments in the hand of musicians. We 
have used the word association cadence/caadence as a sort of word play to make this 
event even more memorable.

Mihály Szoboszlai 
Chair of the Organizing Committee
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Changing Tangent and Curvature Data of B-splines via 
Knot Manipulation

Szilvia B.-S. Béla1, Márta Szilvási-Nagy2 
1,2Department of Geometry, Mathematical Institute,
Budapest University of Technology and Economics, Budapest, Hungary
e-mail: {belus|szilvasi}@math.bme.hu

Abstract: Modifications of B-spline knot values change the parametrization and 
influence the shape of B-spline curves. Via these computations one can modify B-
spline data (derivative, curvature value at a curve point, some points of the control 
polygon, etc.) such that the new parametrization of the curve satisfies special in-
put conditions of a B-spline algorithm. We give a detailed analysis of operations 
on knot vectors determining the parametrization of non-uniform B-spline func-
tions. Different knot manipulation techniques are presented using blossoming 
approach. We describe a new knot manipulation strategy: repositioning of a knot, 
which is computed directly without knot insertion and removal. This strategy can 
be used for clamping the control polygon of B-spline curves. As further applica-
tions of the knot manipulation we show two methods which modify the tangent 
and the curvature data in the starting and end points of B-spline curves. These 
computations are illustrated with nice examples.

Keywords: B-spline curves, knot manipulation, end conditions

DOI:  10.3311/CAADence.1615

Introduction
Knot manipulation techniques are widely used to 
modify the parametrization of B-spline curves. 
These parameter-transformations are necessary 
to fulfill geometric constrains in certain points/
edges of B-spline curves or surfaces. Such con-
strains can arise from various user specified in-
put conditions or from the geometry of the model 
in curve and surface design. 
The most important knot manipulation tech-
niques are the knot insertion and removal. These 
algorithms can be used for degree manipulation, 
refinement of the knot sequence, changing the 
contact order of spline segments by raising the 
multiplicity of knots, clamping or unclamping the 
control polygon of the curve etc. Formerly several 

papers have been presented to analyze knot in-
sertion and removal strategies (see [4, 5]). A good 
survey can be found in the books [6, 7]. Eck et al. [9] 
also presented a paper which analyses in details 
the knot removal. As an application of techniques 
keeping the shape of the input curve the clamping 
of control polygons is described by Hu et al. [10], 
which is a special case of the knot modification. 
Clamping the control polygon of the B-spline is a 
knot modification which pulls all knot values into 
one in the end of the knot vector. A further appli-
cation of knot manipulation is shown in [11], where 
the authors present a curve merging method with 
adjusting the knot vectors of the input curves.
The effect of changing one knot in the knot vector 
and keeping the control polygon unchanged was 

http://dx.doi.org/10.3311/CAADence.1615
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comprehensively studied by Juhász and Hoffmann 
[12]. Since this knot manipulation changes the 
shape of the input curve, the authors applied the 
technique in different shape control problems [13]. 
We present here a collection of different knot 
manipulation techniques which keeps or approxi-
mates the shape of the input curve. The insertion 
and removal techniques are combined in order to 
perturb a knot in the inner part and in the end of 
the knot vector. We describe the effect of these 
knot perturbations on the shape of the B-spline 
curves. In order to apply these knot manipulations 
we show how to set the tangent and the curvature 
values at the endpoints of a B-spline curve and how 
to generalize this technique to B-spline surfaces.

B-spline curves and knot  
manipulations 
The Definition of B-spline Curves
A curve b(t) is called a B-spline of order k, defined 
on the knot vector t=(t1, t2, …, tn) where ti ≤ ti+1 for 
all i, if 

	
(1)

where C=(c1, c2, …, cn-k) are the control points of 
the curve and Ni

k(t) are the  basis functions defined 
by the recurrence:

These curves are piecewise polynomial curves 
of degree k-1 over the parameter domain [tk, tn-k]. 
Each segment of the curve has the parameter 
range [ti, ti+1], where i=k,…, n-k-1. These segments 
are joining to each other in the points b(ti) with 
contact order k-2, if all ti knots are different. 
If we change the value of a knot ti, then the basis 
functions Ni

k(t),j = 1, ..., j + k - 1 are changed. By 
adding or removing a knot value we can change 
our basis to denser or coarser function set, while 
the curve will have one more or one less control 
point and curve segment.

Knot Insertion and Removal Algorithms
Knot insertion is a technique, which raises the 
number of basis functions used in the assign-
ment of the curve. Thus the insertion of a knot 
can be derived without changing the shape of the 
curve. We can express the new control points  
C*=(c1, c2, …, cn-k)  of the curve via a matrix mul-
tiplication,

	 C*= M(t, j; τ)C,  		               (1)

where M(t, j; τ) is a bidiagonal matrix and τ is the 
new knot value inserted to the knot vector t into 
the “j+1”th place (see [1] for details).
The removal of a knot from the knot vector results 
in the basis the reduction of the number of basis 
functions, thus it cannot be always derived with-
out changing the shape of the curve. Therefore 
different techniques exist to remove a knot from 
the knot vector. These techniques generate an 
approximating curve of the original curve, which 
keeps the shape of the curve if the removal can be 
derived without error. The condition when the knot 
removal does not change the shape of the curve 
can be found in [9] or in [1] eq. (4).  The most com-
mon removal techniques are collected in [1]. In the 
paper three main techniques are considered: the 
direct   inverse method of insertion, and the re-
versal insertion method proposed by Tiller, which 
can be computed in two different ways, depending 
on whether we apply the method forward or back-
ward to the sequence of the control points.

Repositioning of a Knot
Changing one knot value can be understood as 
consecutive removal of the knot tj and the inser-
tion of the new perturbed knot value τ ∈ (tj-1, tj+1). If 
the knot removal cannot be done without changing 
the shape of the input curve then we can carry out 
the knot perturbation using different knot remov-
al strategies. Moreover the order of knot insertion 
and removal also influences the shape of the out-
put curve. If we apply first the removal then the 
insertion of a knot, the output curve preserves the 
shape of the curve generated by the simple knot 
removal, thus this technique of knot repositioning 
cannot generate a better approximating output 
curve as the curve computed by the knot removal 
(see Figure 1).
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        





    






              


      




       
   

   
 

      




          






             

               

           





        





    






              


      




       
   

   
 

      




          






             
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The recursive computation of the knot insertion 
and removal can be derived with the help of blos-
soming technique of B-splines. We can derive 
similarly the repositioning of a knot as a direct 
computation on the control points (see [1]). This 
direct computation technique can be computed in 
two different ways, too, either forward or back-
ward on the sequence of the control points.  The 
direct repositioning method and the removal af-
ter insertion technique have always one of the two 
computed output curve, which is the same. If the 
knot tj is slid to the right to tj < τ , then the back-
ward computed direct method and the backward 
computed removal after insertion techniques 
have the same output curve, if  τ< tj then the for-
ward computed output curves are the same.

Comparison of the Knot Perturbation Methods 
In the following example we compute the output 
curves of the different knot perturbation algo-

rithms for a B-spline curve of degree 3. We com-
pare here the error occurred in the approxima-
tions. The input curve was defined by the control 
points

on the uniform knot vector t={0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15}. The knot vector of the 
input curve (grey curve in Figure 2) was modi-
fied such that the knot value “8” was slid to the 
left to value “7.9”. The output curves of the differ-
ent  algorithms are shown in Figure 2. The error 
of each approximation is computed with piecewise 
integration on the segments of the curve, and in 
addition a maximal error value is computed in 
each segment due to the parameterization. Table 
1 shows the error values.

Figure 1:  
On the left the output 

curves of consecutive knot 
insertion and removal, on 

the right knot insertion 
after removal are shown 

on a B-spline curve of 
degree 4. The insertion af-
ter the removal preserves 

the shape of the curve 
arisen after the removal 

the knot.



           

    

            


            
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            



            




          
            
             









       
       

      
 


      
      

       
      

       
      






           



Table 1:  
Approximation error 

measured along each 
segment of the approxi-

mating output curves. 
For each method the first 
row shows the total error 

along the segment, the 
second row contains the 
maximal error of the ap-

proximation.



| CAADence in Architecture <Back to command> |  Section B2 - Smooth transition108 

The error values show us, that the direct compu-
tation generates a good approximating curve in 
that part of the input curve, from which the com-
putations has been started. Figure 2 in the right 
shows the first four segments of the output curve 
using the forward computation of direct pertur-
bation and the last three segments of the output 
curve generated by the backward computed re-
positioning. The two curves are disjoint in their 
endpoints associated to the common parameter 
value 7.9, but both curve segments are preserving 
better approximation along the first/second half 
of the input curve, respectively, than other gener-
ated output curves.

Application of knot changing for 
end knots of the knot vector
Modifying Endknots
If we modify the “endknots” in the knot vector of 
a B-spline of order k, then the recomputation of 
the first and last k-1 knots can be always carried 
out without changing the shape of the curve. The 
repositioning of the kth or n-k+1th knots (first and 
last “important” knots of the curve) cause the ex-
tension or shortening of the parameter domain of 
the curve, thus the starting/endpoint of the curve 
is moved along the B-spline curve (see Figure 3 a) 
and b)). If we slide all endknots to the first (last) 
“important” knot of the curve then we clamp the 
control polygon to the starting (end)point of the 
curve, namely the first(last) control point will 
be moved to the starting (end)point of the curve  
(Figure 3 c)).

Figure 2: 
A B-spline curve of 
degree 3 is modified. In 
the left the output curves 
of the direct method is 
shown computed forward 
and backward along the 
control polygon. In the 
right the starting seg-
ments of the forward 
computed and the last 
segments of the backward 
computed repositioning 
are shown together.

Figure 3: 
a-b) Changing third and 
fourth knots of a cubic 
curve. The grey curve is 
the input curve. In the 
first case the curve is 
unchanged, in the second 
case it is extended. 
c) Clamped control 
polygon computed by knot 
moving.

a) b) c)
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Solution of a second order boundary problem by 
knot repositioning
In the next example we show a cubic B-spline 
curve with prescribed second order boundary 
conditions. As we have shown the length of the 
kth knot interval in the knot vector influences the 
starting point, the tangent vector at this point and 
also the shape of the curve. Now we are going to 
compute the control points of a cubic B-spline 
curve with given starting point, tangent vector and 
curvature in this point. The two first control points 
of the curve are determined by the starting point 
and the tangent vector at this point, and they are 
the solution of a system of linear vector equations 
for each fixed knot vector. The third condition, a 
prescribed curvature value at this point leads to 

a non-linear equation, either we want to deter-
mine the third control point, or a knot value. In the 
case of a changing third control point additional 
conditions would be necessary in order to deter-
mine all the coordinates from a scalar equation. 
Therefore, we have analyzed, how the curvature 
of a curve of order k is depending on the kth knot 
value perturbed in the fixed interval (tk-1, tk+1).  In 
our case the 4th knot value is changed in the in-
terval determined by the 3th and 5th knot values. 
We have found that the curvature is monotone de-
creasing within a bounded interval while the 3th 
knot interval is growing. Consequently, to each 
curvature value the corresponding value of the 
perturbed knot can be determined numerically by 
a simple interval dividing method. 

Figure 4:  
The resulting curve shown 

as a dashed curve, it is 
determined by the control 

polygon, the two first 
control points of which are 

computed from the given 
starting point and tangent 

vector (not shown) with 
the appropriate knot vec-

tor chosen according to 
the given curvature.

Figure 5:  
The resulting surface 

has the boundary curve 
interpolating the given 

points and tangent vec-
tors. The „longitudinal” 

isoparametric curves have 
the prescribed curvature 

within a relative error 
bound of 10-2.
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Figure 4 shows the solution of this second order 
boundary problem for a cubic B-spline curve. The 
given curvature value is visualized by the osculat-
ing circle at the prescribed starting point with a 
given tangent vector. Of course, the range of this 
curvature value is limited by the fixed length of the 
knot interval, where the knot value is moving, but it 
can be influenced by the length of the tangent vec-
tor. This is a subject of our further investigation. 
We have extended this method to a bicubic sur-
face. One set of isoparametric curves are com-
puted according to the algorithm developed for 
cubic B-spline curves. Figure 5 shows a B-spline 
surface consisting of 2 x 2 patches. The end condi-
tions are visualized on a sphere along a circle. The 
curvature is the reciprocal value of the radius. In 
[2] and [3] the end conditions are given by the first 
and the second derivatives of the curve.

Conclusions 
We have shown new methods for shaping B-spline 
curves which can be applied to merge and to fit 
B-spline curves or surfaces. In our algorithms 
the knot vector determining the basis functions 
of a B-spline curve has been changed using knot 
repositioning methods. The different knot pertur-
bation techniques are analyzed and compared via 
examples. As a possible application it is shown 
how to set the endpoint, the tangent direction and 
curvature value of a B-spline curve using knot re-
positioning in the end of the knot vector. The nu-
merical computations and the figures have been 
made by Wolfram Mathematica.
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